PubMed: Producing submicron chitosan-stabilized oil Pickering emulsion powder by an electrostatic collector-equipped spray dryer

PubMed: Producing submicron chitosan-stabilized oil Pickering emulsion powder by an electrostatic collector-equipped spray dryer

Carbohydr Polym. 2022 Oct 15;294:119791. doi: 10.1016/j.carbpol.2022.119791. Epub 2022 Jun 28.

ABSTRACT

Chitosan (CS) was modified with two fatty acids, i.e., capric acid (CA) and palmitic acid (PA). Particle size (315.8 nm), zeta potential (31.8 mV), and viscosity (29.4 mPa.s) of CS-PA nanogels were lower than CS-CA nanogels (793.2 nm, 53.3 mV, and 70.7 mPa.s). First, hempseed oil-in-water Pickering nanoemulsions were stabilized by CS-based particles/maltodextrin (MD). Then, the emulsions were dried using an electrostatic collector-equipped spray dryer. The D50 of re-dispersed emulsion powders with CS-PA/MD coating was 936 nm. According to the FE-SEM images, oil coated with CS-PA/MD showed higher porosity and C/O ratio at the particle surface compared to the CS-CA/MD coating leading to more oil leakage. In addition, the crystallinity of hempseed oil coated with CS-PA/MD was higher than the one coated with CS-CA/MD. These findings showed that submicron Pickering emulsion powders could be achieved by targeted modification of CS and using a spray dryer equipped with an electrostatic collector.

PMID:35868798 | DOI:10.1016/j.carbpol.2022.119791

#CBD #Hemp https://pubmed.ncbi.nlm.nih.gov/35868798/?utm_source=Chrome&utm_medium=rss&utm_campaign=None&utm_content=1jYCQzi_o_qLYr-oQfnMhShgOXkvGma3vcnBGJtrBhuJMOvEVJ&fc=None&ff=20220726162159&v=2.17.7 July 22, 2022 10:00 am

বাংলা简体中文繁體中文EnglishFrançaisDeutschहिन्दीItaliano日本語한국어मराठीPortuguêsਪੰਜਾਬੀРусскийEspañolSvenskaతెలుగుไทยTürkçeУкраїнськаTiếng Việt