fbpx

PubMed: Selective isolation of pesticides and cannabinoids using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to high-performance liquid chromatography

PubMed: Selective isolation of pesticides and cannabinoids using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to high-performance liquid chromatography

J Chromatogr A. 2022 Aug 10;1680:463416. doi: 10.1016/j.chroma.2022.463416. Online ahead of print.

ABSTRACT

The high abundance of cannabinoids within cannabis samples presents an issue for pesticide testing as cannabinoids are often co-extracted with pesticides using various sample preparation techniques. Cannabinoids may also chromatographically co-elute with moderate polarity pesticides and inhibit the ionization of pesticides when using mass spectrometry. To circumvent these issues, we have developed a new approach to isolate commonly regulated pesticides and cannabinoids from aqueous samples using tunable, crosslinked imidazolium polymeric ionic liquid (PIL)-based sorbent coatings for direct immersion solid-phase microextraction (DI-SPME). The selectivity of four PIL sorbent coatings towards 20 pesticides and six cannabinoids, including cannabidiol and Δ9-THC, was investigated and compared against a commercial PDMS/DVB fiber. Extraction and desorption conditions, including salt content, extraction temperature, pH, extraction time, desorption solvent, and desorption time, were optimized using high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Under optimized conditions, the PIL fiber consisting of 1-vinylbenzyl-3-octylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([VBIMC8+][NTf2]) and 1,12-di(3-vinylbenzylimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide ([(VBIM)2C122+]2[NTf2]) sorbent coating provided the best selectivity towards pesticides compared to other PILs and the PDMS/DVB fibers and was able to reach limits of detection (LODs) as low as 1 µg/L. When compared to a previously reported PIL-based SPME HPLC-UV method for pesticide analysis, the amount of cannabinoids extracted from the sample was decreased 9-fold while a 4-fold enhancement in the extraction of pesticides was achieved. Additionally, the PIL-based SPME method was applied to samples containing environmentally-relevant concentrations of pesticides and cannabinoids to assess its feasibility for Cannabis quality control testing. Relative recoveries between 95% and 141% were obtained using the PIL sorbent coating while recoveries ranging from 50% to 114% were obtained using the PDMS/DVB fiber.

PMID:36030566 | DOI:10.1016/j.chroma.2022.463416

#CBD #Hemp https://pubmed.ncbi.nlm.nih.gov/36030566/?utm_source=Chrome&utm_medium=rss&utm_campaign=None&utm_content=1jYCQzi_o_qLYr-oQfnMhShgOXkvGma3vcnBGJtrBhuJMOvEVJ&fc=None&ff=20220829162035&v=2.17.7 August 28, 2022 10:00 am

বাংলা简体中文繁體中文EnglishFrançaisDeutschहिन्दीItaliano日本語한국어मराठीPortuguêsਪੰਜਾਬੀРусскийEspañolSvenskaతెలుగుไทยTürkçeУкраїнськаTiếng Việt