PubMed: Ultrasonic-Assisted Extraction of Cannabidiolic Acid from Cannabis Biomass

PubMed: Ultrasonic-Assisted Extraction of Cannabidiolic Acid from Cannabis Biomass

J Vis Exp. 2022 May 27;(183). doi: 10.3791/63076.


Industrial hemp (Cannabis spp.) has many compounds of interest with potential medical benefits. Of these compounds, cannabinoids have come to the center of attention, specifically acidic cannabinoids. The focus is turning toward acidic cannabinoids due to their lack of psychotropic activity. Cannabis plants produce acidic cannabinoids with hemp plants producing low levels of psychotropic cannabinoids. As such, utilization of hemp for acidic cannabinoid extraction would eliminate the need for decarboxylation prior to extraction as a source for the cannabinoids. The use of solvent-based extraction is ideal for obtaining acidic cannabinoids as their solubility in solvents such as supercritical CO2 is limited due to the high pressure and temperature required to reach their solubility constants. An alternative method designed to increase solubility is ultrasonic-assisted extraction. In this protocol, the impact of solvent polarity (acetonitrile 0.46, ethanol 0.65, methanol 0.76, and water 1.00) and concentration (20%, 50%, 70%, 90%, and 100%) on ultrasonic-assisted extraction efficiency has been examined. Results show that water was the least effective and acetonitrile was the most effective solvent examined. Ethanol was further examined since it has the lowest toxicity and is generally regarded as safe (GRAS). Surprisingly, 50% ethanol in water is the most effective ethanol concentration for extracting the highest amount of cannabinoids from hemp. The increase in cannabidiolic acid concentration was 28% when compared to 100% ethanol, and 23% when compared to 100% acetonitrile. While it was determined that 50% ethanol is the most effective concentration for our application, the method has also been demonstrated to be effective with alternative solvents. Consequently, the proposed method is deemed effective and rapid for extracting acidic cannabinoids.

PMID:35695545 | DOI:10.3791/63076

#CBD #Hemp https://pubmed.ncbi.nlm.nih.gov/35695545/?utm_source=Chrome&utm_medium=rss&utm_campaign=None&utm_content=1jYCQzi_o_qLYr-oQfnMhShgOXkvGma3vcnBGJtrBhuJMOvEVJ&fc=None&ff=20220614065912&v=2.17.6 June 13, 2022 10:00 am

বাংলা简体中文繁體中文EnglishFrançaisDeutschहिन्दीItaliano日本語한국어मराठीPortuguêsਪੰਜਾਬੀРусскийEspañolSvenskaతెలుగుไทยTürkçeУкраїнськаTiếng Việt