PubMed: The Cannabigerol Derivative VCE-003.2 Exerts Therapeutic Effects in 6-Hydroxydopamine-Lesioned Mice: Comparison with The Classic Dopaminergic Replacement Therapy

PubMed: The Cannabigerol Derivative VCE-003.2 Exerts Therapeutic Effects in 6-Hydroxydopamine-Lesioned Mice: Comparison with The Classic Dopaminergic Replacement Therapy

Brain Sci. 2023 Aug 31;13(9):1272. doi: 10.3390/brainsci13091272.

ABSTRACT

(1) Background: A cannabigerol aminoquinone derivative, so-called VCE-003.2, has been found to behave as a neuroprotective agent (administered both i.p. and orally) in different experimental models of Parkinson’s disease (PD) in mice. These effects were exerted through mechanisms that involved the activation of a regulatory site within the peroxisome proliferator-activated receptor-γ (PPAR-γ). (2) Methods: We are now interested in comparing such neuroprotective potential of VCE-003.2, orally administered, with the effect of the classic dopaminergic replacement therapy with L-DOPA/benserazide in similar conditions, using 6-hydroxydopamine-lesioned mice. (3) Results: The oral administration of VCE-003.2 during 14 days at the dose of 20 mg/kg improved, as expected, the neurological status (measured in motor tests) in these mice. This correlated with a preservation of TH-labelled neurons in the substantia nigra. By contrast, the treatment with L-DOPA/benserazide (during 7 days at 2 mg/kg) was significantly less active in these experimental conditions, in concordance with their profile as a mere symptom-alleviating agent. (4) Conclusions: Our results confirmed again the therapeutic profile of VCE-003.2 in experimental PD and revealed a different and more relevant effect, as a disease modifier, compared to the classic symptom-alleviating L-DOPA treatment. This reinforces the interest in VCE-003.2 for a future clinical development in this disease.

PMID:37759872 | PMC:PMC10527302 | DOI:10.3390/brainsci13091272

https://pubmed.ncbi.nlm.nih.gov/37759872/?utm_source=Chrome&utm_medium=rss&utm_campaign=pubmed-2&utm_content=1Ds1JEbG0OWaBdqM3tTUGjkFhFGaOtMecPdpuvzbuubWi6d9Fn&fc=20231022105433&ff=20231022112106&v=2.17.9.post6+86293ac September 28, 2023 10:00 am